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Abstract

A new shear press employing spherical opposed anvils is used to determine
shear strength, coefficients of internal friction, and viscosity data for upper-
mantle mineral analogues under geophysically realistic conditions of high tempera-
ture and pressure. The press uses high-frequency induction to externally heat
samples to 10000C at simultaneous pressures tc 60 kb, Strain rates vary from
1 sec™! to 1073 gec- 1.

Torsion induced shear tests unaer normal pressures as high as 70 kb on
forsterite, enstatite, labradorite, diopside, and pyrope garnet indicate that all
these minerals possess very high strength at 270C, but that their strength decreases
markedly at higher temperatures. Sample behavior at strain rates of 10-3 sec-1
suggests further slight weakening.

Shear strengths for forsterite, enstatite, diopside, and labradorite equal
15,17, 14.92, 14.03, and 13,15 kb respectively at 50 nb normal pressure and 27°C,
but decrease approximately 12 percent for each 250°C rise in temperature. Pyrope
exhibits a strength of 19.47 kb at 69 kb normal pressure and 27°C, Variation in
strain rate from 1 sec™! to 1073 sec™! produces no detectable strength variation at
279C, negligible effect in two tests at 3000C, and a 5 percent strength decrease in
two tests at 700°C for natural forsterite from Addie, North Carolina,

Internal friction coefficients for forsterite, enstatite, diopside, labradorite,
and pyrope are 0,11, 0,23, 0.17, 0.15, and 0. 15 respectively at 27°C and decrease
0,01 each at 300°C. At 37 kb *1 kb normal pressure and 27°C temperature,
rhombic enstatite inverts to the stable, high-temperature, nomoclinic form of




clinoenstatite within minutes under the influence of shear strcss. The monocliuse
form persists at least to 8000C and 50 kb.

iess than 1 perccent of weight by water rclcased by scrpentine dehydration
associated with niatural forsterite abovc 500°C produces a 20 percent decrcase in
strength in thc olivine aggrcgate as tcmperature is raised from 300 to 520°C.
Water weakcening of olivinc may be significant at carth depths ranging from 20 to
40 km,

Surfaccs in contact under high pressures and low tempcraturcs shcar dis-
continuously by a process that creates and shcars off microscopic junctions along
the interface, and manifests in stick-slip behavior.

Under the cxperimcntal conditions, all five mincrals deform cataclastically,
with plastic bchavier becoming important at high pressures and tcmperatures and

at slow strain rates,.
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Foreword

This report is an abridgement of talks given by the author at the Earth Science
Technologies Association Seminar, West Warwick, Rhode Island; the Air Force
Institute of Technology, Wright-Patterson Air Force Base, Ohio: Boston Coilege,
Chestnut Hill, Mass.; the VESIAC Special Advisory Conference, LaJolla, California;
and the Geology Department, University of Rochester, Rochester, New York,
Minor changes have been made in the text in order to mcre clearly develop points
that were made with visual aids during the talks.
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Geophysical Implications of Shear Deformaticn in Rocke

1. INTRODUCTION

The purpose of this paper is to briefly describe the rock-deformation research
being ccnducted by the U.S. Air Force. The research program was initiated under
the Advanced Research Projects Agency's VELA-UNIFORM program, and its
objective is to determine shear strength, viscosity, and internal friction data for
deep crust and upper mantle rock and mineral analogues under geophysically
realistic conditions of very high temperatures and pressures. The data obtained
through this research will be, initially, used to interpret earthquake crigin and
seismic signal generation; ultimately, it will be used to determine criteria that can
be utilized to distinguish between natural earth phenomena and underground ex-
plosions.

Even after 7 years of thought and experiment, it is still difficult to distinguish
the natural from the man-made disturbances. For example, in 1962 (the last full
year of major underground testing), 50 underground shots with a yield greater than
1 kt were detonated. In the same year over 12,500 earthquakes with magnitudes
greater than 4 were recorded. If a geophysicist were to assume that every tremor
observed by him was an earthquake, he would be right 99, 6 percent of the time.

He would be wrong only 0.4 percent of the time, but it's this minor inaccuracy that
has such severe consequences in a test ban program.

(Received for publication 12 March 1965)




Although many problems remain, some encouraging progress has been made
in the discritnination field. In 1558, when we first began seriously considering the
possibility of a test ban, seismologists listed almost 500 events from tne USSR
which could have been classified as of unknown origin. In othe: words, one couldn't
determine whether they were explosive tests or natural earthquakes. In 1964 the
total of unknowns had dropped to around 40 — an impressive advance, although still
a disturbing number of unknowns remains to be discrimin ted. This remainder

will be tougher to crack.

2. CAUSES OF ROCK FAILURE

Part of our project in rock-deformation research involves obtaining a better
understanding of rock failure and what actually causes earthquake=s. Much has been
learned at the Nevada test site and elsewhere relative to the phenomenology of
underground explosions and the transfer of energy into elastic compressicnal and
transverse waves, bLut very little is known about the origin ol earthquakes or about
rock behavior below the surface of the earth. The deepest oil well in west Texas
penetrates only about 25,000 fi (about 5 miles) of the crust, the deepest mines in
the world about 2 miles. This absolute dearth of information at~2ut the deeper crust
and mantle is incredible when we recall the almost routine satellite flights to distant
space hundreds of thousands or even millions of miles from us. The National
Science Foundation's Froject Mohole — for which a hole will be drilled to the
boundary between the earth's crust and mantle-—is a pcsitive step toward alleviating
the dearth of information.

Now let's review very briefly and generally what we do know about rock behavior
in the deep earth, Rocks behave in diverse fashion as a function of manifold environ-
mental factors. Figure | shows a stress-strain curve for a brittle material (carve B)
in which an initial linear elastic portion is terminated anrupt.y by rupture.® However,
under diifering conditions the same rock material may behave in a ductile fashion
(curve A) where the initial linear elastic portion passes through a yield point

foliowed by a region of strain hardening with a final region of flow.

3. FACTORS INFLUENCING: ROCK BEHAVIOK

Next we ask, what factors influence the behavior of rocks. Figure 2 is a stress-

strain diagram for limestone in which the only variation in the series of tests

*Figures 1, 2, and 3 are from Billings, M.P. (1956) St-uctural Geology,
Prentice-Hall, Englewood Cliffs, New Jersey, pp. 16, 18, aaxd 22.
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reprosented is pressur e, Notice that in the initial test at 1 I\’g/cm2 the material
is brittle. However, as the confining pressure increases, the curves reflect an
increase in ductilit with the final test at 4000 Kg/cm2 illustrating uniform flow.
Pressure is not the only factor that influences the strength of materials —
temperature is also important. Figure 3 illustrates the effect of temperature on
strength. Notice that for limestone again, temperatures from ambient to 150°C
markedly decrease the strength of the limestone. Also in these tests, the presence
of solutions caused further weakening of the rock.
Now tosummarize some of the factors that effect the strength of materials.
We have seen that pressure increases the strength of rocks and temperature de-
creases it. Time is also important. We xknow that if a rock is loaded quickly it
will appear to be stronger than if it is loaded =lowly, when creep or flow may occur,
Roc'ts are strongest in compression, weakest in ‘ension, and exhibit interme~diate
strengths in shear. Other factors that can further influence the behavior of rocks,
but generally to a minor degree, are: naturec of the stresses, presence of solu-
tions, anisotropy and orientation, past strain history, crystal perfection, and

aggregation.

4. ROCK DEFORMATION

Rocks deform in a number of ways. They deform macroccopieally, exhibiting
a phenomenon known as cataclasis that involves the smashing and rupture of the
grains. They deform microscopically by gliding, which involves the movement of
dislocations through the atomic structure of the material. The movement, genera-
tion, and blocking of dislocations that manifest in gliding constitute ductiie flow.
Rocks also deform through recrystallization. We'll discuss evidence for some of
these flow mechanisms when we examine results from scme of the specific shear
tests, but now let's turn our attention to the manner in which rock-deformation

tests are performed.

5. ROCK-DEFORMATION TES’I'S‘

There are four major types of apparatus used to apply pressures, temperatures,
and variable strains to rock materials. The simplest type is the opposed anvil
apparatus (Figur= 4) ‘n which a thin sample wafer is squeezed between two opposed
pistons. This type of apparatus, first used by Bridgman, attains pressures of
400 "tb and temperatures of 600 to 800°C. We'll see an offspring of this device a
bit later, which we successfully use to 50 kb and 10000C.
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Equally simple in desigr is the piston and cylinder device shown in Figure 5,
The pressurc exerted on the sample can be determined by the force per unit area
of the pisten. Maximum piressures of 400 kb at room temperature were obtained
with this device by Drickamer at the University of lllinois. Heating to extreme
ternperatures is a proble:.. in this device.

The belt apparatus (Figure 6), a more complex and elegant device, is said to
be an ultimate design in using Bridgman's principle of massive support to prevent
premature piston failurc. This epparatus was designed by Tracy Hall at General
Electric almost 10 years ago; today many similar apparatus arc used to manu-
facture several million carats of diamonds every year. Its capacity exceeds 100
kb and 2000°C,

Another device designed by Hall at about the same time as the belt is the
tetrahedral press. The one shown in Figure 7 is used routinely in the Materials
Sciences l.aboratory of AFCRL. Four rams arranged at the corners of a tetra-
hedron apply pressure to a sample placed in a tetrahedral shaped gasket ol
pyrophyllite. Very high pressure and temperatures, equivalent to those of thc
"belt", can be attained with this device.

Some expesimenters added rams to the tetrahedral concept, and a new genera-
tion of cubic devices with six rams was developed. Press design reflects diverse
engineering imagination required by the particular experiment. Shock techniques
are also uscd to ger.erate pressures in the mega>ar range —rcaching carth-core
pressures of 3.5 megabars for millionths of a second duration—but sustained
prcssurcs cannot be applied. Nevertheless, the correlation of static and dynarmic

test data has been very encouraging.

6. CURRENT ROCK-DEFORMATION RESEARCH AT AFCRL

For the remainder of our discussion, let's turn our attention to current rock-
deformation research being conducted at AFCRL. As mentioned previously, we
are conccrned with the properties of the lowcr crust and upper mantle of the earth
— in short, with the outer several hundred k ilometers of the planet.

Figure 8 depicts a section of the earth cxposing the thin crust that is separated
from the bulky mantle which contains 7/8 of the earths volume. The boundary
called the Mohorovicic Discontinuity represents either a phase change from crust
to denser polymorphs in the mantle, or a compositional change from lighter sialic
rocks {with Si and Al predominating) to simatic rocks {with ferromagnesium
minerals predominating) below. At 2900 km depth we find another geophysical and
compositional boundary that marks the scparation betwcen the massive fluid core
and tie lighter rigid mantle. Why should the outer several hundred kilometers be

so important ?
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Over 85 percent of earthquakes have focal depths at less than 200 kin. The
Gutenberg low-velocity channel lies at a depth between 150 and 400 km and repre-
sents a region within the mantle, possibly a phase change or liquifaction, in which
the P and S waves decrease in velocity from an accelerating rate on entering the
mantle. The Mohorovicic Discontinuity varies in depth from 80 km below young
mountain chains to less than 10 km in the Pacific Ocean. Most magmas, or molten
rocks and gases, that manifest in vulcanism and the emplacement of igneous rocks
in the crust originate at depths less than 200 km. Frequently, the eruptions of
Mauna Loa and Kilauea volcanoes in Hawaii are preceeded by earthquakes, with
focal depths at 60-70 km, several months or years prior to the eruptions. Finally,
geodesists tell us from satellite data that the level of compensation also lies within
this region, that is, all surfaces loads are fully balanced in the outer levels of the
earth. Thus we see that the outer 200 km of the earth is an exceedingly interesting
region. We could add other manifestations to our list, such as heat flow, which
may be accounted for by radioactive decay in this outer region and none of which
may represent conductive radiation from the molten core.

The outer earth holds as many profound secrets as does our neighbor the moon,
Going into the cuter earth by drilling is no more Jules Vernian than going to the
moon by 1970, and it will be far less expensive, by at least 3 orders of magnitude.
Although estimates vary depending upon the kinds of work included in the category
"solid-earth research,' by any estimate the total now being spent by federal
agencies does not exceed a few tenths of 1 percent of the current yearly U.S, ex-
penditure for research and development, now in the range of 15 billion dollars.*
Now, right now, before we get completely carried away, let's furn our attention to

the shear deformation program.
7. EQUIPMENT USED FOR EXPERIMENTS

The principal apparatus used in AFCRL shear experiments (Riecker, 1964a) is
unique to rock-deformation research in three major respects: (1) its size and
capacity, capable of simultaneous pressures and temperatures to 60 kb and 10000C
on 1-in. -diam samples approximately 0.020-in, -thick; (2) its use of high-frequency
induction to quickly heat and quench samples; and (3) the radical design of its
spherical anvils. (See Figure 9.)

The shear apparatus consists of a 1/2 hp motor and special three-pininon gear
train, with change gears to p ‘ovide sufficient torque to overcome shearing resis-
tance in compressed mafic minerals at variable speeds from 12/sec to 10'3/sec.
(See Figure 10.) Normal pressure is generated by a 300-ton-capacity hydraulic jack

that is used interchangeably with a 100-ton, controlled-clearance, frictionless jack.

*Solid Earth Geophysics, NAS-NRC Pub. No. 1231 (1964) p. 192.
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Load cells of various capacities at the end of a 15-in. ~-long torque arm monitor the
force transmitted to the sheared sample. Shear strength is determined from the
torque measurements, Heat is appiied to the sample wafers through a 5-kw, high-
frequency - induction heater. These experiments are modeled after those
Bridgman who, from 1920 to 1950, determined the shear strength cf several
hundred minerals, alloys, and compounds.

The spherical anvils used in shear experiments (IFigure l1) are super-strength
ailoy and cermet balls that are forced into stainiess steel and ceramic backup
plates; they are cooled by water and liquid nitrogen. MNassive support derives frein
the spherical geometry of the balls and the tight fit of thc stainless steel surround-
ing their lower hemisphere. The balls are inexpensive, therefore economy is one
of the major design attributes. 'The temperature of the sample under test condi-
tions is monitored by an infrared pyrometer (Figure 12) that is calibrated against
chromel-alumel thermocouples biried in exact duplicates of the anvils (Riecker,
1964b). Fressures znd temperatures are accurate to within +1 percent at 50 kb
and 1000°C. Also, maximum temperature of the sample can be reached within
50 sec from a cold start, Cooling to ambient temperatures requires somewhat
less time.

3. MINERALS USED IN EXPERIMENTS

The minerals used in the shear tests are magnesium-olivine from Addie, North
Carolina, and Hawaii; enstatite from Bamle, Norway; diopside; labradorite; and
pyrope garnet. These minerals are the important constituents of peridotite or
garnet pyrolite, two rocks that have the appropriate seismic velocities and other
physical and chemical properties for what is regarded as the dominant upper mantle
rock phase (Figure 13). Synthetic boules of forsterite and diopside have been grown,
using the Verneuil flame-fusion technique, and tested to determine the effect of
~=~iable composition within a single mineral and to minimize confusion resulting
. om spurious compositional variations.

Sanmples nre prepared either by grinding the crystals into a powder and press-
ing the powder into pellets, or by thinly slicing the crystals. The method of sample
preparation does not result in significant data variation. Each wafer is about
0.020-in. thick and may be 1/4 in., 1/2 in., or 1 in. diam.

9. RESULTS OF EXPERIMENTS

Bridgman (1237) showed, during a long series of shear experiments beginning

about 1915, that a change in the shape of the shear-stress normal-pressure curve
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of a sheared sample marks the transition from surface slip of the anvils over the
compressed wafer at low normal pressures to internal shear at high pressures
(Iigu=e 14). Theoretically, shear-stress normal-pressure curves should consist
of two straight lines. one passing through the origin representing surficial slip, the
other independent of normal pressure representing internal sheer.

It's not surprising that the observed data produce curves that depart somewhat
from this idealization. The dissimiliarity may be considered a measure of th
departure from the oversimplified model. The assumptions that ONLY surficial
slip occurs below the knee and that ONLY true flow occurs above are obvious over-
simplifications. The behavioral model is in fact complicated by the simultaneous
occurrence of both these mechanisms, @s well as by the predominant presence of
cataclasis throughout the test conditions.

Figure 15 shows shear strength data plotted for forsterite at four temperatures
from ambient to 700°C, up to 50 kb, Strain rate variation from 10/sec to 10‘3/sec
produced negligible variation in the position of the data points. The dashed lines
represent curves resulting from shear tests for synthetic MgoSiOy; the solid lines
record data for natural forsterite from North Carolina. True shear strength is
represented by data from the upper portions of the curves, and may be approximated
at lower pressures by extending the upper slope to intersect the abscissa.

Notice the decrease in relative strength between the 300°C curve and the 520°C
curve for the natural forsterite, This decrease results from the deccmpositior or
dehydration of from 4 to 5 percent of the associated serpentine, to talc plus water,
which Legins at about 5000C, The dehydration yields water vapor within the com-
pressed pellet and manifests in significant pore pr:ssure and st:ength reduction in
the same manner as suggested by Hubbert and Rubey (1959), The effect is most
prominent at high normal pressures where sample compression is greatest.

The synthetic forsterite shear results plot normally aiong curves, as would be
expected for higher temperaturcs only. The difference between the strength of
natural and synthetic forsterite at the same temperature amounts to almost 20 per-
cent. This significant drop in strength represents one of the most important results
of the research to date. It is similar in nature to observations by Grigg: et al (1365)
on synthetic quartz deformed at high temperatures.

Griggs found that the strength of synthetic quartz drogs one-hundred-fold as
the temperature is raised from 200°C to 600°C. He explains this anomalous weak-
ness to be due to diffused water throughout the crystal which hydrolyzes the silicon~
oxygen bonds. The silanol groups so formed become mobile at the higher tempera-
tures and align themselves in disiocation lines. These move through the crystal
with the dislocations under small applied shear stresses. Griggs has zlso observed
similar water-weakening in quartz crystals surrounded by hydrous pressure media.

Similar examples of serpentine water-weakening were reported by Robertson
(1964) and Handin (1964) for samples from the AMSOC experimental test hcle in
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Puerto Rico. Handin's samples under confining pressures to 2 kb showed a 40 pey-
cent reduction in strength at temperatures from 20°C to 200°C. H-ar (1962}
observed a 10-10id strength reduction in gypsum as it passed through the transition
to anhydrite plus water.

Al]l of these ohservation: of course raise the possibility oi great weakness in
the earth's deeper crust and upper mantle at temperatuses very much less than the
melting point of the rocks present there,

Internal deformation of sheared minerals at high pressures s indicated by the
development of deformation lamellae, increased undulose extincticn, and related
N-ray, petrogrephic, and electron mic.suscope features. Figure 16 shows & typical
extinction band group developed in the Hawaiisn olivine subparallel to (100). No
evidence for recrystallization has been found. The failure mechanism is alrmost
entirely cataclastic over the entire range of conditions. Data or high temperatures
and pressures and for the slowest strain rates suggest a tendency for clivine to
become ductile,

Figure 17, a thin section of natural North Carolina olivine, shows the minor
associated antigorite and crysotile serpentine surrounding and along cracks in the
forsterite grains. The hydrous minerals dehydrate over the temperature r-nge
from £009C to 800CC. IL.ess than 1 percent by weight of water is released, but
even that small amount is sufficient to markedly affect the strength of the olivine.

Figure 18 illustrates a second impcrtant phenomenon that sometimes develops
in shear exverim=nts. It shows the results {or enstatite that was deformed at
temperatures, pressures, and strain rates similar to those applicd to the olivine
sample., On ti.e ambient temperature curve, notice the effect on shear strength of
a pnase change as enstatit~ ‘mverts at about 37 kb to the monoclinic polymorph
clinoenstatite, which is 5. onger than the rhombic form under similar test condi-
tions. Enstatite held at 80 kb for 1 hour without shear, however, does not invert,
thus indicating that the irversion is shear sensitive. Shear causes the reaction to
go almost to completion in ! to 2 seconds at 39 kb.

These results differ from those obtained by Sclar (1964) for pure enstatite
compressed hydrostatically in a modified belt apparatus at pressures and tempera-
turec to 130 kb and 13000C. Sclar's equilibrium boundary is shown and should be
inferred to be below 13 kb. Notice that our samples, sheared considerably
above the hyarostatic equilibrium boundary, still exhibit the clinoenstatite structure
(F'igure 15). This result indicates that shear stress may have a very significant
effect ¢n the phase transformations anticipated in the upper mantle. In this case
the effect of shear is equivalent to several hundred degrees centigrade in facilitating
the inversion of rhombic enstatite to the monoclinic high-temperature form. Also,
in the future, considerably more care will have to be given to considesations of the

nature and magnitude of stresses developed in experimental phase wark.,




Figure 16. Typical Extinction Band Group in Olivine, Extinction
bands subparallel to (100). Diameter of grair is 2 mm

Figure 17. Thin Section of North Carolina Olivine Showing
Serpentine Adjacent to and Along Cracks in the Olivine
Grains. Largest grains are 2 mm across
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Our results show that enstatite inverts to clinocnstatite at very slight tempera-
tures undcr the influence of shear stress, and that this monoclinic form persists
to the limit of current experiments at 800°C and 50 kb,

Onc additional experiment manifestation might be of interest. Bridgman
commented on a phenomenon common to his shear expcrimenws, which he suggested
might bc of possiblc geophysica! interest. He noted that in about 40 percent of the
materials defcrmed, shear took place discontinuously with the evolution of loud
snapping or chattering noises. Bridgman (1937) said: '"Instead of rotating smoothly,
many substances rotate with protest. Some substances chatter, others squeak,
others makc a grinding noise, and one has been found to hiss.' He suggested that
the snapping was a manifestation of intcrnal rupture.

Snapping accompanies all our shecar xperiments at low temperatures, but
diminishes and disappears entirely at temperatures above 4009C or at siower strain
rates, We know now, much through the work of Rowden and Tabor (1960), that when
two surfaces meet thcy join at only a few poi.ts of contact or a2sperites on each
surface, and that these asperities deform when carrying the load {Figure 20).
Joining two surfaces has been compared to placing Switzerland upside down over
At _tria. If the surfaces are sheared, then the asperities shear off while new points
of contact wecld. The snapping, therefore, represents the shearing of asperities
and rcwelding during shear.

Figure 21 is an electron micrograph of the surfaces of sheared olivine showing
about three asperities per square micron. The continual shearing of the junctions
and formation of new points of contact result in the obser ved stick-slip behavior
noted in the torque record. Thus when load is applie? to a sample pellet, junctions
form at the asperities. 71.ae junctions flow sufficiently to carry the load while the
substrate is loaded elastically., When shear begins the junctions are aiready ductile;
therefore, the smallest tangential force produces minute tangential displacement
or microslip in the junctions, and the joints grow and deform further. 1f the shear
stress exceeds the shear strength of the material, the junctions fail and the
surfaces slip over cach other a minute distance until the process of penetration and
cold welding recurs,.

The sequence is shown diagramatically in Figure 22, where A represents the
initial elastic deformation of the asperity, B represents the ductile deformation of
the junction, and C represents slip following rupture of the junctions, follov-ed by
general strain hardening at the interface.

As long as the contacting surfaces remain free of oxides or other contaminants,
the stick-slip, jerky phenomenon characterizes the shear behavior along the inter-
face. However, if contaminants are present, such as in the high~temperature
shear experiments where anvil components readily oxidize, then the stick-slip

snapping ceases and shear occurs only in the film separating the adjacent surfaces.




Figure 21. Elecztron Micrograph of Deformed Olivine
Pellet Showing Approximately Three Asperities per
Square Micron, Deep grooves result from shearing
motion
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Figure 22. Diagram Showing Initial Elastic Deformation
of the Asperity (A), Followed by Ductile Deformation (B)
With Terminal Rupture Followed by General Strain
Hardening (C)
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At deep levels within the earth, stick-s.1p surely must accompany the shear of
adjacent biocks joined along a planar interface, if indeed such a mechanism

operatcs to generate elastic wsves.

10. SUMMARY OF EXPERIMENTS

To summarice the major results of shear experiments to date, we have secn
that pressures of . om 10 to 50 kb increase the shear strength of mafic minerals
by as much as 50 percent. Temperature decreases strength, generally by 12 per-
cent at maximum pressures for each increase of 250°C. The rate of strain does
not appear to zffect shear strength significantly over the range from 10/sec to
10-3/sec, but ii should be noted that these strain rates are rapid and, as Heard
(1963) has shown for Yule marb.e, strain rate effects become significant at rates
less than 10‘5/sec above <000C. It is almost certain that our strzin rates favor
cataclasis. Geologic strain rates are considered to be on the order of 10-14/sec.

Shear stress facilitates phase transformations, as witnessed by the inversion
of enstatite to clinoenstatite within seconds at 37 kb normal pressure and 27°C,
whereas simple compression to 80 kb for cxtended periods does not effect the
transformation. Compression tests held for 1 hour at 450°C also do not show
inversion.

Less than 1 percent by weight of water released by dehydration of serpentine
above 500°C produces a 30 percent decrease in strength in the olivine aggregate
as the temperature is raised from 3000C to 520°C. This effect might be expecte:l

to be important at depths in the earth ranging from 20 to 40 km.

Surfaces in contact under high pressures shear discontinuously by a process
that creates and shears off minute junciions along the contact interface and mani-
fests in stick-slip behavior or " stiction". Finally, under the experimental
conditions, olivine and enstatite— as well as the other minerals we did not discuss,
Jdeformed cataclastically, with the ductile behavior becoming important only at high

pressures and temperatures and at slow strain rates.

11. CONCLUSIONS

The results of the experiments lead us to join other sxperimenters (Ode, 1960;
Orowan, 1960, 1964; Griggs and Handin, 1960; Evison, 1963; Benioff, 1964) who
suggest that deep earthquakes do not occur by the same process that we assume to
exist at shallow earth depths. For as many have shown, the increase in strength
as a function of pressure alone is sufficient to negate the existance of any reason-

able stress couple that could cause strictly brittle fractures at deep levels. Further,
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rocks change in behavior so completely with temperature, state of stress, solu-
tions, and additional factors, and become so ductile at depth, that no sizeable stress
couple could de . elop before ductile flow would dissipate the stress. In short,
geologic faults probably do not exist at deep earth levels, and earthquakes, there-
fore, originate from other causes below shallow depths.

These obsgervations—when coupled with the lack of any certain theory of rock
strength, the observations of deep earthquakes to 700 km, and the interpretations
therefrom —indicate that a significant problem still exists in earth physics. It is
hoped that scientists and engin¢ 2rs will aggressively come to the aid of the experi-
menters by suggesting sounder and more realistic experiments for future geo-

physically oriented rock-deformation studies. A unified approach must be developed

pefore the phenomenology of deep earthquakes is mastered.
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